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aggregate queries to be executed on a data stream, the set of
aggregate queries comprising queries that perform respective
sets of aggregation operations on respective sets of attribute
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mediate aggregate query for a subset of the set of aggregate
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FIG. 4

Algorithm 1 Greedy(4): Greedy heuristic for finding aggregate tree.

1t Tyeq Is initialized to the aggregate tree in which all 4; € 4
are children of the root node;

2: while Ty, cost improves by at least e do

3 cur = Tpoeti

4: for all pairs of sibling aggregates 4, B in Teyr do

5 Let aggregate C = 4 V B;

6 Let P be the parent of 4, B in Teyr;

7 tet T be the tree derived from Teyr by (1) odding C as
P's child, and (2) making 4, B children of C;

8: if cost(T) < cost(Typg) then Ty = T

9:  endfor

10:  for all aggregates 4 ¢ 4 in Toyr do

11 Let P be parent of 4 in Teyr;

12: Let T' be the tree derived from Tpur by deleting 4, and
making 4’s children the children of P,

13; if cost(T) < cost(Ty,g) then Ty = T

14:  end for

15: end while

16: Return Tyog
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FIG. 5

Algorithm 2 Randomized(4): Randomized heuristic for finding
aggregate tree.

1: Initidlize S = 4 v {T};

2: for ¢ iterations do

% R=0

4. forc, iterations do

3 Pick a random number 7 between 1 and =;

b: Pick 7 aggregates at random from 4 and let B be their
union;

7. R=RuU B

8:  endfor

9 Let G be the partial aggregate graph on S U R;

10: Tpq = Steiner(G, T, 4);

11: Set S to the set of aggregates that appear in Typqs
12; end for

13: Return Tyq;
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1
METHOD AND APPARATUS FOR EFFICIENT
AGGREGATE COMPUTATION OVER DATA
STREAMS

CROSS REFERENCE TO RELATED
APPLICATION

This application is a Continuation of U.S. patent applica-
tion Ser. No. 11/770,926, filed Jun. 29, 2007, the disclosure of
which is incorporated by reference herein.

FIELD OF THE INVENTION

The present invention relates generally to data processing
systems and, more particularly, to improved techniques for
processing data stream queries in such data processing sys-
tems.

BACKGROUND OF THE INVENTION

Examples of data streaming applications include applica-
tions that process data such as network traffic records, stock
quotes, Web clicks, sensor data, and call records. One type of
network traffic record is known as a NETFLOW record,
which is a record generated in accordance with NETFLOW
protocol available from Cisco Systems, Inc. (San Jose,
Calif.). NETFLOW and CISCO are trademarks of Cisco Sys-
tems, Inc.

Such data streams can generate hundreds of gigabytes of
information each day. Processing of such vast amounts of data
can obviously place a heavy load on the data processing
system that performs such processing. The situation is further
exacerbated since analyzing huge volumes of data can require
a large number of aggregate queries to be processed. As is
known, an aggregate query is a query that performs an aggre-
gate computation (e.g., summation, average, max, min, etc.)
on a given data set (e.g., a data stream). These queries may be
generated by system administrators seeking to obtain infor-
mation about the system.

Thus, for real-world deployment, scalability is a key
requirement for these types of collection systems. Naive
query answering systems that process the queries separately
for each incoming record can not keep up with the high stream
rates.

Accordingly, what is required for scalability is an
improved technique for processing data stream queries.

SUMMARY OF THE INVENTION

Principles of the invention provide an improved technique
for processing data stream queries.

For example, in one aspect of the invention, a method
includes determining, using a processor, a set of aggregate
queries to be executed on a data stream, the set of aggregate
queries comprising queries that perform respective sets of
aggregation operations on respective sets of attribute values
over respective time intervals. The method also includes gen-
erating, using the processor, at least one intermediate aggre-
gate query for a subset of the set of aggregate queries, the at
least one intermediate aggregate query combining a subset of
aggregation operations for the subset of aggregate queries and
a subset of attribute values. The method further includes
executing, using the processor, the at least one intermediate
aggregate query to generate pre-aggregated data from the data
stream for the subset of aggregate queries and executing,
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using the processor, the subset of aggregate queries on the
pre-aggregated data subsequent to executing the at least one
intermediate aggregate query.

Inanother aspect of the invention, an article of manufacture
comprises a processor-readable non-transitory storage
medium storing one or more instructions. The one or more
instructions, when executed by a processor, configure the
processor to determine a set of aggregate queries to be
executed on a data stream, generate at least one intermediate
aggregate query for a subset of the set of aggregate queries,
execute the at least one intermediate aggregate query to gen-
erate pre-aggregated data from the data stream for the subset
of queries, and execute the subset of aggregate queries on the
pre-aggregated data subsequent to executing the at least one
intermediate aggregate query. The set of aggregate queries
comprises queries that perform respective sets of aggregation
operations on respective sets of attribute values over respec-
tive time intervals. The at least one intermediate aggregate
query combines a subset of aggregation operations for the
subset of aggregate queries and a subset of attribute values.

In yet another aspect of the invention, an apparatus
includes a memory and a processor coupled to the memory.
The processor is configured to determine a set of aggregate
queries to be executed on a data stream, generate at least one
intermediate aggregate query for a subset of the set of aggre-
gate queries, execute the at least one intermediate aggregate
query to generate pre-aggregated data from the data stream
for the subset of queries, and execute the subset of aggregate
queries on the pre-aggregated data subsequent to executing
the at least one intermediate aggregate query. The set of
aggregate queries comprises queries that perform respective
sets of aggregation operations on respective sets of attribute
values over respective time intervals. The at least one inter-
mediate aggregate query combines a subset of aggregation
operations for the subset of aggregate queries and a subset of
attribute values.

These and other objects, features and advantages of the
present invention will become apparent from the following
detailed description of illustrative embodiments thereof,
which is to be read in connection with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a query processing system according to
an embodiment of the invention.

FIG. 2 illustrates a processing system architecture for
implementing a query processing system according to an
embodiment of the invention.

FIGS. 3(a) through 3(d) illustrate query plans (for queries
without filters) generated according to illustrative embodi-
ments of the invention.

FIG. 4 illustrates a greedy heuristic for computing an
aggregate tree according to an embodiment of the invention.

FIG. 5 illustrates a randomized heuristic for computing an
aggregate tree according to an embodiment of the invention.

FIG. 6(a) through 6(d) illustrate query plans (for queries
with filters) generated according to illustrative embodiments
of the invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Principles of the invention implement the concept of a
query execution plan. Given a set of aggregate queries (also
referred to herein more simply as “aggregates™), each of
which may or may not involve filters, principles of the inven-
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tion provide techniques for generating a query execution
plan. A query execution plan is basically a structure that
describes in which order the queries are to be executed.

As will be explained in detail below, the query execution
plan may contain certain one or more intermediate aggre-
gates. These intermediate aggregates are fine-grained aggre-
gates, which are then used to generate coarse-grained aggre-
gates. Advantageously, the intermediate aggregates will
generally be much smaller than the input data stream itself,
and so computing multiple query results from an intermediate
aggregate will cost much less than answering these queries
directly from the data stream.

With respect to filters, principles of the invention provide
techniques for coalescing similar filter conditions into a
single filter, which is then used as a pre-filter to reduce the
amount of data input to the queries.

Furthermore, it is demonstrated below that query plans
incorporating the above two computation sharing optimiza-
tions have a tree structure. Principles of the invention also
provide a detailed cost model for aggregate query computa-
tion that takes into account hash computation and filter evalu-
ation costs. Thus, the problem of finding the optimal query
plan with the lowest computation cost is reduced to that of
finding the minimum-cost aggregate tree.

It is proven that the problem of finding a minimum-cost
aggregate tree is NP-hard. In accordance with principles of
the invention, two heuristics are provided, one greedy and one
randomized, to find low-cost aggregate trees. In the greedy
heuristic, small locally optimal modifications that deliver the
maximum cost reduction in each local step are made to the
aggregate tree. The randomized heuristic takes a more global
approach. In each iteration, the randomized heuristic adds
randomized intermediate aggregates to the tree and then uses
a directed steiner tree heuristic (R. Wong, “A Dual Ascent
Approach for Steiner Tree Problems on a Directed Graph,” In
Mathematical Programming, 1984)to find the minimum cost
steiner tree out of the expanded graph.

These and other principles of the invention will be illus-
trated below in conjunction with NETFLOW records associ-
ated with an exemplary NETFLOW collector (NFC) system
(available from Cisco Systems, Inc. (San Jose Calif.)) as the
exemplary type of data stream and the exemplary data pro-
cessing system. It should be understood, however, that the
invention is not limited to use with any particular type of data
stream or data processing system. The disclosed techniques
are suitable for use with a wide variety of other data process-
ing systems which process various types of data streams, and
in numerous alternative applications.

Cisco’s NETFLOW Collector (NFC) (“Cisco CNS NET-
FLOW Collection Engine Installation and Configuration
Guide, 3.0”) is representative of an emerging class of appli-
cations that require multiple OLAP (Online Analytical Pro-
cessing) style aggregate queries to be processed over a con-
tinuous stream of data. NFC collects IP (Internet Protocol)
flow records exported by network devices and allows users to
run queries for estimating traffic demands between IP end-
points, computing the top hosts in terms of IP traffic, profiling
applications, and detecting network attacks and intrusions.
For this reason, it is extensively used by network administra-
tors to manage real-world IP networks. However, besides IP
networks, such multiple-query streaming applications can be
found in other domains as well, for example, financial tickers,
retail transactions, Web log records, sensor node readings,
and call detail records in telecommunications.

Principles of the invention were at least in part motivated to
improve the scalability of NFC-like applications so that they
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4

can process hundreds of queries. In the following, we
describe NFC in further detail.

In an IP network, a flow is essentially a continuous unidi-
rectional sequence of packets from a source device to a des-
tination device. NETFLOW, first implemented in Cisco’s
routers, is the most widely used IP flow measurement solution
today. A network device (e.g., router, switch) can be config-
ured to export a single NETFLOW data record for every IP
flow that passes through it. Each NETFLOW record has a
number of attributes that describe the various flow statistics.
Individual attributes can be classified into one of two catego-
ries:

Group-by attributes: These include source/destination IP
addresses for the flow, source/destination ports, ToS
byte, protocol, input and output interfaces, etc.

Measure attributes: These include the number of packets or
bytes in the flow, begin/end timestamp, flow duration,
etc.

NFC collects the NETFLOW records exported by devices
in the network, and processes user-specified aggregate que-
ries on the collected NETFLOW data. Each aggregate query
consists of: (1) a subset of group-by attributes—records with
matching values for attributes in the subset are aggregated
together; (2) an aggregate operator (e.g., SUM, COUNT) on
a measure attribute—the measure attribute values for aggre-
gated records are combined using the specified aggregate
operator; (3) a boolean filter condition on attributes; and (4) a
time period over which aggregation is to be performed—after
each successive time period, result tuples for the aggregate
query (computed over NETFLOW records that arrived during
the time period) are output.

Below, we give an example NETFLOW query that is a
variant of the Cisco NFC predefined HostMatrix aggregation
scheme (Cisco NFC has 22 predefined aggregation schemes):

group-by: {srcaddr, dstaddr}

aggregate-op: SUM(bytes)

filter: (srcaddr € 135.254.*% * ~ dstaddr € 135.254.* %)

period: 15 min

The above query returns the total traffic in bytes between
every pair of IP addresses in subnet 135.254.* * aggregated
over 15 minute intervals (note that * is a wild-card that
matches any integer between 0 and 255).

A production service provider network contains hundreds
of routers which can easily generate massive amounts of
NETFLOW data. In fact, it is known that even with a high
degree of sampling and aggregation, an IP backbone network
alone can generate 500 GB (gigabytes) of NETFLOW data
per day (about ten billion fifty-byte records). The situation is
further exacerbated since analyzing the huge volumes of
NETFLOW data (for diverse network management tasks)
requires a large number of aggregation queries to be pro-
cessed. Thus, for real-world deployment, scalability is a key
requirement for a NETFLOW data management system like
NFC. The system must be able to process, in real time, hun-
dreds of queries over high-speed NETFLOW data streams.
Naive query answering strategies that process the queries
separately for each incoming NETFLOW record can not keep
up with the high NETFLOW stream rates. Thus, we have
realized that what is required for scalability are techniques
that improve processing efficiency by avoiding redundant
work and sharing computation among the various queries.

In an illustrative embodiment, we disclose two computa-
tion sharing techniques for scalable online processing of hun-
dreds of aggregate queries on rapid-rate data streams. A key
idea underlying our techniques, in this embodiment, is to first
identify similarities among the group-by attributes and filter
conditions of queries, and then use these commonalities as
building blocks to generate the final query answers.
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In accordance with principles of the invention, we assume
that the streaming environment has sufficient memory to pro-
cess the input aggregate queries. This realization is made
possible, for example, due to the fact that: (i) RAM (random
access memory) prices have dropped considerably in the past
few years, allowing machines to be equipped with several
GBs of RAM; and (ii) in our experiments with a number of
real-life data sets and aggregate queries, we found that query
results can be easily accommodated in main memory. For
instance, in the NETFLOW record traces stored at the Abilene
observatory (“Abilene Observatory Data Collections™), the
New York Internet2 backbone router exported a total of 1.7
million NETFLOW records in a 20 minute period (from
11:20 to 11:40 on May 8, 2006). For this data, the aggregate
results for the 22 default CISCO NFC queries contain
approximately 6 million result tuples that take up only 75 MB
(megabytes) of memory.

Therefore, based on current technology trends, we have
realized that it is practical to process hundreds of stream
queries in main memory. Advantageously, as will be illus-
trated below, this realization leads to query processing
approaches that focus on optimizing CPU (central processing
unit) cycles as opposed to main memory usage.

For the sake of convenience, the remainder of the detailed
description is organized as follows. In Section 1, we describe
a system architecture for implementing query processing
techniques of the invention. We describe the system model
and cost model for processing queries in Section 2. In Section
3, we present our two heuristics for generating tree-structured
query plans for aggregate queries without filters. We extend
our heuristics to handle filters in Section 4.

1. Mustrative System Architecture

FIG. 1 shows a block diagram of a data processing system
in which techniques ofthe invention may be implemented. As
shown, query processing system 102 includes module 104 for
performing aggregation of data (in this embodiment, NET-
FLOW data) in hash tables, and module 105 for query plan
generation.

In general, query plan generation module 105 receives
input aggregate queries, filters (if any), and the epoch period.
These inputs are defined by the user (e.g., system administra-
tor). While input 106 is referred to as XML (Extensible
Markup Language) input in the figure, the query plan genera-
tion module of the invention is not limited to processing input
of'this type. From this input (referred to as 106 in the figure),
module 105 generates query plan 107.

Then, with query plan 107 generated by module 105, mod-
ule 104 inputs the NETFLOW records from the various rout-
ers and switches (this is more generally considered as stream-
ing data from one or more sources) in the subject network
(referred to as 108 in the figure) and generates aggregated
output 110. Given generation of the query plan in accordance
with the techniques of the invention, aggregated output 110 is
generated by module 104.

It is within the data aggregation module and the query plan
generation module that techniques of the invention, to be
described in detail below in the following sections, are pref-
erably implemented.

FIG. 2 shows a processing architecture 202 for implement-
ing query processing system 102 of FIG. 1. One or more
software programs for implementing query processing (i.e.,
query plan generation and aggregate output generation) as
described herein may be stored in memory 206 and executed
by processor 204. Memory 206 may therefore be considered
a processor-readable storage medium. Processor 204 may
include one or more integrated circuits, digital signal proces-
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sors or other types of processing devices, and associated
supporting circuitry, in any combination.

The system shown in FIG. 2 may also be considered as the
host machine on which the query processing system of FIG. 1
resides, i.e., the computing system upon which a query execu-
tion plan is generated and implemented. As mentioned above,
principles of the invention are advantageously able to carry
out all query processing in the host machine’s main memory
(memory 206 may be considered as representing the main
memory of the host machine). Thus, storage for hash tables is
not a major constraint in the system of the invention, and the
system can accommodate multiple result tuples in a single
hash bucket.

2. [lustrative System and Cost Models

In this section, we first describe the aggregation queries
supported by our illustrative query processing system, which
may be generalized in a straightforward manner to support a
broad range of applications including NETFLOW data man-
agement similar to CISCO’s NFC. We then present a naive
approach that processes each query independently on the
input stream, and finally, we develop a cost model for esti-
mating the CPU cycles consumed for producing query
answers.

2.1 System Model

We consider a single stream consisting of an infinite
sequence of tuples, each with group-by attributesa,, ..., a,,
(e.g., source/destination IP addresses, source/destination
ports), and a measure attribute a, (e.g., byte count). We are
interested in answering a set of aggregate queries Q=
1Q,, - . ., Q,} defined over the stream of tuples. A typical
aggregate query Q, has three main components, listed below:

Aggregation. This includes: (1) the subset of group-by
attributes on which aggregation is performed—a result
tuple is output for each distinct combination of these
group-by attribute values; and (2) the aggregation opera-
tor that is applied to the measure attribute values of
aggregated tuples—this is one of the typical SQL (Struc-
tured Query Language) aggregates like MIN, MAX,
AVERAGE, SUM, or COUNT.

Filter. This is essentially a boolean expression (containing
boolean operators v and ) over attribute range condi-
tions. Only tuples whose attribute values satisty the
range conditions specified in the filter expression are
considered for aggregation. For instance, the filter (sr-
caddr € 135.254.*% * " dstaddr € 135.254.*% %) in the
above example NETFLOW query only aggregates NET-
FLOW records between IP addresses in subnet
135.254.% *

Period. This is the time interval (referred to in FIG. 1 as the
epoch period) over which aggregation is performed—
after each time period, result tuples for each unique
combination of group-by attribute values and the asso-
ciated aggregated measure attribute value are output.

In this embodiment, we will assume the following: (1) the
measure attribute and aggregation operator are the same for
all aggregates; and (2) all aggregate queries in Q have the
same time period T; thus, result tuples for all aggregates are
output at the same time. Our proposed aggregate and filter
sharing techniques can, however, be easily extended to handle
scenarios when these assumptions do not hold. For example,
a straightforward way would be to partition the input query
set into subsets of queries, each with identical measure
attributes, aggregate operators, and time periods, and then
apply our query processing techniques to each subset. Prin-
ciples of the invention can be extended to other scenarios.

Thus, going back to the assumptions for this embodiment,
aggregate queries in Q differ only in their grouping attributes



US 9,116,956 B2

7

and filters. Consequently, if A, and F, denote the group-by
attributes and filter expression, respectively, for query Q,,
then we can completely characterize each query Q, by the pair
(A,,F,). In the remainder of the detailed description, we will
use A to denote the collection of grouping attributes A, for the
queries, and F for the set of filters F,. We will also use N to
denote the number of stream tuples that arrive in time period
T. And finally, in view of the abundance of RAM on modern
machines, we will assume that there is adequate main
memory for processing queries.

2.2 Naive Query Evaluation Strategy

A naive strategy is to simply process each aggregation
query independently for each incoming stream tuple. For
each query Q,, we maintain a separate hash table on the
group-by attributes A,. The steps involved in processing query
Q, for a tuple are: (1) check if the tuple satisfies the filter
condition F,—if not, then simply stop processing the tuple;
and (2) hash on the group-by attributes to locate the hash
bucket for the tuple, and then update the aggregate statistic for
the group-by attribute values. Note that, in the second step,
the first time a tuple with a specific combination of grouping
attribute values is encountered, a new entry for that group is
created (and initialized) in the bucket. If an entry for the group
already exists in the bucket, then only the aggregate statistic
for the group is updated.

Every time period T, the result tuples for all the aggregates
are output by scanning the non-empty buckets in the hash
table for each aggregate query, and writing to an output file
the group-by attribute values and the aggregate value in every
bucket entry. Once all the result tuples are written, all the hash
tables are re-initialized by setting their buckets to be empty.
2.3 Query Evaluation Cost Model

Next, let us examine the CPU cost for answering a query Q,
using the above naive strategy. First, we introduce some nota-
tion. Let o denote the selectivity of the filter condition F,;
thus, a fraction Oy of stream tuples satisfy F,. Further, let
s7z(A,,F,) be the size of the result after tuples filtered through
F,areaggregated onattributes in A,. Both 0 and sz(A,,F,)can
be estimated by maintaining random sampfes of past stream
tuples and applying known sampling-based techniques, for
example, as disclosed in Moses Charikar et al., “Towards
Estimation Error Guarantees for Distinct Values,” In PODS,
2000. Consider a random sample of size r of our stream data
set with N tuples. Let f; and f, denote the number of values
that occur exactly 1 time and 2 or more times, respectively, in
the sample. Then the GEE estimator for the number of distinct
values is

N
— fith
\ 7

In this embodiment, we use the same random stream sample
to estimate the size of all intermediate aggregates considered
in our heuristics. Note that in the presence of filters, we
require the values that contribute to the counts f; and £, to
satisfy the filter.

We will use C(A,) to denote the cost of hashing a tuple on
its group-by attributes A,. Similarly, Cn(F,) will denote the
costof checking the filter condition F, for the tuple. We use the
UNIX ELF hash function (e.g., Andrew Binstock, “Hashing
rehashed,” Dr. Dobbs, April 1996) in our hash table imple-
mentation; the function first computes a hash value by per-
forming bit manipulation operations on successive bytes of
the input value to be hashed. UNIX is a trademark of the Open
Group of San Francisco, Calif. It then applies a mod function
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to compute the hash bucket from the hash value. Our filter
evaluation operation considers a conjunction of attribute
range conditions, and checks the range condition (by per-
forming two comparisons) for each attribute in the filter. We
measured the running times (in nanoseconds or ns) for hash-
ing and filtering on a PC with a 3 GHz INTEL PENTIUM 4
processor running REDHAT ENTERPRISE LINUX 3.0.
INTEL PENTIUM is a trademark of Intel Corporation of
Santa Clara, Calif. REDHAT ENTERPRISE LINUX is a
trademark of Redhat, Inc. of Raleigh, N.C. Both hashing and
filtering costs increase linearly with the number of attributes.
Hashing incurs about 50 ns for each additional attribute in A,,
while filtering requires about 5 ns per attribute range condi-
tion in F,. Thus, it follows that hashing is about 10 times more
expensive than filtering, for the same number of attributes. In
our hash computation experiments, we found the overhead of
the final mod function step to be negligible at only about 15
ns. Additionally, when inserting tuples into a hash table, we
found that hashing is the dominant cost, and other actions like
finding the appropriate bucket entry and updating it consume
only a small fraction of the CPU cycles.

Now, the computation cost for query Q, on each stream
tuple includes the cost of applying the filter F, to the tuple, and
then inserting the tuple into the hash table on attributes A, if it
satisfies F,. Thus, since there are N stream tuples in time
period T, we get that the CPU cost for processing Q, over time
interval T is N-Co(F,)+N-0-C(A,). Atthe end of time T, the
sz(A,,F,) result tuples for Q; are output. In general, sz(A,F,)
will be small compared to N, and so we expect output costs to
be negligible compared to the computation costs. Also, every
query processing scheme will incur identical output costs. So
in the remainder of the detailed description, we ignore the
cost of writing the result tuples to an output file, and focus
primarily on the result computation cost which comprises the
CPU cycles for hashing and filtering the incoming stream
tuples.

Processing each query in Q independently (as is done by
the naive strategy) may lead to redundant computation. In the
following sections, we show that by sharing aggregate com-
putation among the queries in Q in accordance with principles
of the invention, it is possible to achieve a significant reduc-
tion in computation overhead and boost overall system
throughput.

3. Processing Aggregate Queries without Filters

We begin by considering queries without filters. Thus, each
query Q, € Q is simply the group-by attributes A, on which
tuples are aggregated, and query processing costs are com-
pletely dominated by the hash function computation costs.

For the multiple-query scenario, the naive approach of
maintaining separate hash tables for each aggregation query
has the drawback that for each streaming tuple, the hash
function value is computed n times, once for each input aggre-
gate A,. In this section, we show how we can reduce the hash
function computation overhead by sharing hash tables across
aggregates.

3.1 Execution Model and Problem Formulation

To reduce the number of hash operations, our technique
instantiates a few intermediate aggregates B,, . . ., B, each of
whose size is much smaller than N, and then uses them to
compute the various A;s. The reason for the small B; sizes is
that there will typically be many duplicate tuples in the stream
when we restrict ourselves to only the grouping attributes in
B,—these will all be aggregated into a single result tuple.
Now, it is easy to see that each intermediate aggregate B, can
beused to compute any aggregate A, € A thatitcovers (that is,
A,  B)). This is because all the group-by attribute values for
A, are present in the result tuples for B,. Thus, by making a
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single pass over the result tuples for B, and inserting them into
the hash table for A,, aggregate A, can be computed. In this
manner, the result tuples for these intermediate aggregates B,
can be used as input (instead of stream tuples) to compute the
aggregates in A covered by them. Since the intermediate
aggregates B; are much smaller than the tuple stream, it fol-
lows that the number of hash computations is significantly
reduced.

In general, our technique instantiates an intermediate
aggregate if it is beneficial to the overall query processing
plan. For an intermediate aggregate to be beneficial, it pref-
erably has the following property. Assume that: N=input size;
S=output size; X=sum of the number of group-by attributes in
the queries composing the intermediate aggregate; and
Y=number of group-by attributes in the intermediate aggre-
gate. If S<(N*(X-Y)/X), then the intermediate aggregate is
beneficial. For example, assume there are 1,000,000 records
in the stream, and there are two children composing the
intermediate aggregate with group-by attributes: A,B and
B,C. N=1,000,000 and X=4. The intermediate aggregate
would have group-by attributes: A,B,C. Thus, Y=3. There-
fore, for the intermediate to be beneficial, S must be less than
N*X-Y)X, i.e., 1,000,000%(4-3)/4=250,000. Therefore, if
the output size is less than 250,000, then S is beneficial. So in
this example, S must be V4th the size of N. However, in
practice, it is common to see this ratio exaggerated such that
S is many orders or magnitude smaller than N. If the input
stream is 1,000,000 records, it is possible for the output size
of an intermediate aggregate to be 100 records or less,
depending on the data set and the query in question.

More formally, suppose sz(B,) denotes the size of aggre-
gate B, that is, sz(B)) is the number of distinct value combi-
nations observed for group-by attributes B, in the tuple stream
over period T. Then the cost of computing aggregate A,
directly from the stream is N-C,(A,). On the other hand, the
cost of further aggregating the result tuples for an intermedi-
ate B, to compute an aggregate A, that it covers is sz(B,)-Cy
(A)). Thus, by ensuring that sz(B,)<<N, we can realize sub-
stantial cost savings. There is, of course, the additional cost of
computing each B, from the input stream, which is N-C,(B)).
However, if we select the B s carefully, then this cost can be
amortized across the multiple aggregates A, that are covered
by (and thus computed from) each B;.

Next we address the question of what is the best set of
intermediate aggregates B, to instantiate? Our discussion
above points to Bs that are small and cover many input
aggregates A, as good candidates for instantiation. We illus-
trate the trade-offs between the different alternatives in the
following example.

Example 1. Consider a stream with attributes a,b,c and d.
Also let the aggregates A, € A be defined as follows: A,={a,
b}, A,={a,c}, and A;={c,d}. Below, we look at 3 strategies
for computing the aggregates A, (we assume that the hashing
cost C(A,) is proportional to the number of attributes in A,).

Strategy 1. This is the naive strategy in which each aggre-
gate A, is computed directly from the stream (see FIG. 3(a)).
Thus, the total cost of computing the aggregates is Z.N-C,,
(A)-

Strategy 2. This is the other extreme in which we instantiate
a single intermediate aggregate that covers all the aggregates
A, (see FIG. 3(b)). Let B,={a,b,c,d} denote this aggregate.
Each time period T, the result tuples in B, are scanned and
inserted into the hash tables for each A, to compute the final
result tuples. The cost of processing the aggregates is thus the
sum of the following two costs: (1) N-C(B,), the cost of
instantiating B, from the stream; and (2) Z,57(B,)-C.(A,), the
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cost of generating the aggregates A, from B,. Thus, the total
cost is N-C(B)+2,5z2(B, ) C(A)).

Strategy 3. A possible middle ground between the above
two extremes is to maintain a single intermediate aggregate
B,={a,b,c} and the aggregate A;={c,d} directly on the input
stream (see FIG. 3(¢)). Then, each time period T, B, is used to
generate the result tuples for A; and A, (by inserting B,’s
result tuples into the hash tables for A; and A,). Thus, the cost
of processing the aggregates is the sum of the following two
costs: (1) N-C(B,)+N-C(A,), the costs of instantiating B,
and A; from the stream; and (2) sz(B,)-C(A))+sz(B,)-Cx
(A,), the cost of generating the aggregates A, and A, from B,.
Thus, the total cost is N-C(B,)+N-C(A;)+sz(B,) C (A )+
52(B,) C o A,).

Now, suppose that N>>sz(B,). Further, suppose that
sz(B,)=N. This is entirely possible because B, contains result
tuples for every possible combination of attribute values, and
the number of such value combinations could be high. In such
a scenario, both strategies 1 and 2 have high computation
costs because of the large N and sz(B,) values. In contrast,
since sz(B,) is small relative to N and sz(B,), it is easy to
verify that Strategy 3 results in the lowest cost among the 3
strategies. In fact, if for B,={a,c,d}, it is the case that
s7(B;)>sz(B,), then Strategy 3 can be shown to be the best
possible strategy for answering the aggregate queries.

Note that it is not necessary to compute every intermediate
aggregate B, directly from the stream. Rather, it may be pos-
sible to reduce hash computation costs by computing an inter-
mediate B, from another intermediate aggregate, and then
using B, to compute multiple aggregates A,. For instance, in
Example 1, if N>>sz(B,) and sz(B,)>>sz(B,), then the fol-
lowing strategy (depicted in FIG. 3(d)) would be better than
Strategy 3: compute only B, from the stream, then compute
B, and A; from B, and finally compute A, and A, from B,.

Also, observe that each of the query plans considered
above (and shown in FIGS. 3(a) through (d)) is essentially a
tree with the root node corresponding to the stream, and other
nodes corresponding to (intermediate and input) aggregates.
Further, a directed edge in the tree indicates that the destina-
tion aggregate is computed from the source aggregate. We
formalize this using the notion of aggregate trees below.

Aggregate Trees. An aggregate tree is a directed tree with:
(1) a special root node corresponding to the input stream; and
(2) other nodes corresponding to aggregates. The aggregate
for vertex v, is denoted by A(v,). At the root node, since the
input stream is not aggregated, we use the special symbol T
for A(root). T covers every other aggregate A(v,) but not vice
versa, that is, A(v,) < T for all A(v,)—this is because any
aggregate can be generated from the input stream. Further,
since the root includes all the stream tuples, sz(T)=N.

A directed edge < v, ,V2> from vertex v, to vertex v, can be
present in the tree only if the aggregate for v, covers the
aggregate for v, (that is, A(v,) < A(v,)). Note that there are
no incoming edges into the root node. However, there are no
restrictions on outgoing edges from the root, that is, there can
be edges from the root to any other node in the tree. Further,
all nodes in the aggregate tree are reachable from the root.

Each edge <V1,V2> in the tree has an associated cost given
by sz(A(v,))C{A(v,)). Note that the cost of any

edge < v, ,V2> originating at the root is N-C(A(v,)). The cost

of a tree is simply the sum of the costs of all its edges.
Intuitively, an aggregate tree corresponds to a query plan

capable of generating answers for every aggregate contained

in the tree. The directed edge < Vl,V2> implies that node v,’s
aggregate is generated from that of node v,’s. This is possible
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because A(v,) © A(v,) for a non-root v,, and any aggregate
can be generated from the input stream associated with the
root node. The plan for a tree generates aggregates in two
phases:

Real-time streaming phase. Only the child aggregates of
the root node are maintained as tuples are streaming in.
Each streaming tuple is inserted into the hash tables of
each of the root’s children.

Periodic results output phase. At time intervals of period T,
the root’s children are used to generate the remaining
aggregates in the tree. Starting with each child, aggre-
gates are generated by performing a depth first traversal

of the tree. Every time a directed edge <V1,V2> is tra-
versed, the aggregate for v, A(v,) is produced from the
result tuples for A(v,).

Observe that the cost of the edge <V1,V2> is the hash com-
putation cost of producing the aggregate A(v,) from aggre-
gate A(v, —this is the cost of scanning the sz(A(v,)) result
tuples for aggregate A(v,) (or N stream tuples if v, is root) and
inserting them into the hash table for aggregate A(v,). Thus,
the cost of an aggregate tree reflects the total computation cost
of producing all the aggregates in the tree.

Thus, our problem of finding a good query plan (with low
hash computation costs) to process the aggregate queries in A
reduces to the following:

Given an aggregate set A, compute the minimum-cost
aggregate tree T that contains all the aggregates in A.

Our aggregate tree concept allows us to effectively capture,
within a single unified framework, the computation costs
incurred during the real-time streaming and periodic results
output phases. In contrast, existing schemes such as that
disclosed by Rui Zhang et al. (“Multiple Aggregations over
Data Streams,” In SIGMOD, 2005) focus exclusively on opti-
mizing the real-time streaming phase cost, which is the domi-
nant cost when the available space is low and collision rates
are high. However, this can lead to poor query plans for
environments that are not necessarily memory-constrained—
this is because in such environments, the periodic results
output phase cost becomes significant due to low collision
rates, and this is not considered by Rui Zhang et al. Note that
as shown above in Example 1, the minimum-cost aggregation
tree for A may contain intermediate aggregates not in A.

We have proven that the following decision version of our
aggregate tree computation problem is NP-hard: Given an
aggregate set A and a constant T, is there an aggregate tree T
with cost at most T that also contains all the aggregates in A?
3.2 Heuristics for Computing Aggregate Trees

In this section, we present two heuristics for computing an
appropriate aggregate tree. The first is a greedy heuristic that
applies a series of local modifications to the tree, at each step,
selecting the modification that leads to the biggest cost reduc-
tion. The second is a randomized heuristic that adopts a more
global approach; it relies on the observation that the aggregate
tree computation problem has strong similarities to comput-
ing a directed steiner tree over the global aggregate space. So,
directed steiner approximation algorithms such as the one
proposed in M. Charikar et al., “Approximation Algorithms
for Directed Steiner Problems,” In SODA, 1998 or heuristics
like the one in R. Wong, “A Dual Ascent Approach for Steiner
Tree Problems on a Directed Graph,” In Mathematical Pro-
gramming, 1984 can be used to compute an appropriate
aggregate tree.

3.2.1 Greedy Heuristic

Algorithm 1 shown in FIG. 4 contains the pseudocode for
our greedy heuristic. The greedy heuristic considers the fol-
lowing two types of local tree modifications in each iteration:
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(1) addition of a new aggregate C obtained as a result of
merging sibling aggregates A,B (steps 4-9); and (2) deletion
of an aggregate A (steps 10-14). In each iteration, the local
modification that results in the biggest cost decrease is
applied to the tree. The heuristic terminates when the cost
improvement due to the best local modification falls below a
(small) constant threshold e.

Now, lets look at the rationale behind our two local modi-
fications. For a pair of aggregates A,B whose union C is much
smaller than their current parent P, our first modification
enables cost savings of sz(P)-2-sz(C)=~sz(P) to be realized by
adding the new aggregate C to the tree. This is because gen-
erating C from P requires sz(P) hash computations, and then
generating A\B from C incurs an additional 2-sz(C) hash
operations, while generating A,B directly from P requires
2-s7(P) operations. The second modification considers the
opposite situation when the size of an aggregate A is close to
the size of its parent P in the tree—in this case, the extra cost
of generating A from P does not offset the cost reduction
when A’s children are generated from A instead of P. Thus, it
is more beneficial in this case to delete A from the tree and
compute A’s children directly from P.

Note that, in the worst-case, we may need to consider a
quadratic (in n, the number of input aggregates) number of
local modifications in a single iteration. Since the cost benefit
of'each local modification can be computed in constant time,
each iteration has a worst case time complexity that is qua-
dratic in the size of the input.

3.2.2 Randomized Heuristic

As is evident, the greedy heuristic considers local modifi-
cations like merging a pair of siblings. In contrast, the ran-
domized heuristic that we propose in this section takes a more
global perspective—in each merge step, it coalesces multiple
randomly chosen aggregates from A to generate new inter-
mediate aggregates.

Before discussing our randomized heuristic, we make an
important observation that relates our aggregate tree compu-
tation problem to the problem of computing a directed steiner
tree. Consider the graph containing a node for every possible
aggregate (that is, every possible subset of group-by
attributes), and also T for the input stream. In the aggregate
graph, there is a directed edge from aggregate A to aggregate
Bif A covers B, and the cost of the edge is sz(A)-C(B). Now,
it is easy to see that computing the optimal aggregate tree T is
nothing but computing a directed steiner tree (in the graph)
that connects the root T to the set of aggregates A.

Although computing a directed steiner tree is an NP-hard
problem, there exist approximation algorithms (e.g., M.
Charikar et al., “Approximation Algorithms for Directed
Steiner Problems,” In SODA, 1998) and heuristics (e.g., R.
Wong, “A Dual Ascent Approach for Steiner Tree Problems
on a Directed Graph,” In Mathematical Programming, 1984)
in the literature for computing such a tree. Thus, we could
theoretically use a directed steiner approximation algorithm
to find a good aggregate tree in the full aggregate graph.
However, the problem with this is that the full graph contains
2™ nodes (anode for every subset of group-by attributes). This
is exponential in the number of attributes, and so any
approach that is based on creating the full graph will only
work for a small number of attributes.

As illustrated in FIG. 5. our randomized heuristic (Algo-
rithm 2) circumvents this exponential problem by employing
randomization in successive iterations to comnstruct a
sequence of partial (instead of full) aggregate graphs. At the
end of each iteration, variables T,_,, and S keep track of the
current best aggregate tree and the aggregates contained in it,
respectively. In each iteration, we pick a set R of ¢, random
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intermediate aggregates (steps 4-8), and construct a partial
aggregate graph G on SUR. G contains edges from an aggre-
gateto every other aggregate that it covers. We then invoke the
dual-ascent directed steiner heuristic of R. Wong (“A Dual
Ascent Approach for Steiner Tree Problems on a Directed
Graph,” In Mathematical Programming, 1984) to compute a
minimum-cost tree connecting root T to aggregates in A in
graph G. The user-defined parameters ¢, and ¢, determine the
number of iterations and the number of random aggregates
selected in each iteration, respectively—in our experiments,
we were able to obtain satisfactory trees with settings ¢, =50
and c,=n, the number of input aggregates.

Advantageously, since the running time of each iteration of
Algorithm 2 is dominated by steiner tree computation, our
randomized heuristic scales well with the number of queries.
4. Processing Aggregate Queries with Filters

‘We now turn our attention to aggregate queries with filters.
So, each query Q, now consists of a set A, of grouping
attributes and a filter F,. In the following subsections, we will
show how the aggregate tree concept and our heuristics for
computing good trees can be extended to handle these richer
query types.

4.1 Execution Model and Problem Formulation

In the presence of filters, principles of the invention can
reduce computational overhead by sharing filter evaluation
among the various queries. For instance, we can coalesce a
group of similar query filters, and then with a single applica-
tion of the coalesced filter, discard a significant fraction of
stream tuples that are not relevant to the queries. Further,
depending on the selectivity of filters, the location and order
in which filters and hashing operations are executed in the
aggregate tree can make a substantial difference to the overall
computation costs. We illustrate these ideas in the following
example.

Example 2. Consider a stream with attributes a, b, ¢, and d
each with domain {0, . . ., 1000}. For purposes of illustration,
we assume that attribute values are uniformly distributed and
independent. Let there be three queries: (1) Q, with group-by
attributes {a,b} and filter 0=a<95; (2) Q, with group-by
attributes {a,c} and filter 50=a=<100; and (3) Q, with group-by
attributes {a,d} and filter 200=<a=<300. Now there are multiple
query evaluation strategies possible here, which we consider
below.

Strategy 1. The naive strategy is to process each query
separately (see FIG. 6(a))—thus for each stream tuple, query
pair, we first check to see if the tuple satisfies the query filter,
and if so, we insert the tuple into the hash table for the query.

Strategy 2. Now a more efficient strategy can be devised
based on the observation that the filters F, and F, have a fair
amount of overlap and so can be merged to create a new filter,
(G,=0=a=<100. Note that G, is equivalent to F, v F,. The idea
then would be to evaluate the filter G, for every stream tuple,
and only if the tuple satisfies G; would we check the filters F,
and F, for the queries Q, and Q,, respectively. Of course, if
the tuple does not satisfy G, then it cannot possibly satisty F,
or F,, and thus, the tuple can be safely discarded. Thus, with
Strategy 2 (depicted in FIG. 6(5)), we perform only one filter
check for tuples that do not satisty G,, and three filter evalu-
ations for tuples that satisfy G, . It follows that over N tuples,
the filter sharing strategy results in (1+20; )N filter opera-
tions, where 0, denotes the selectivity of filter G;. In con-
trast, the naive strategy requires 2N filter checks for process-
ing queries Q, and Q,. Now, since attribute values are
uniformly distributed, 05=0.1. Thus, since 205=0.2<1, the
filter sharing strategy has lower filter evaluation costs com-
pared to the naive strategy.
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Strategy 3. Next observe that filter F, has significant over-
lap with filter G,. Consequently, when F, is applied immedi-
ately after G, on stream tuples (as in FIG. 6(5)), the number of
additional tuples filtered out by F, is (0g,~0p,)'N. This trans-
lates to filtering out 0.005 fraction of the N stream tuples that
do not need to be inserted into the hash table for Q,, thus
leading to computational savings of 0.005-N-C,(A,). How-
ever, there is the additional cost of applying the filter F, on
tuples filtered through G, which is given by o5 N-Cx(F,).

Now suppose that the aggregated result size sz(A|,
G,)<<0,'N. Then, Strategy 3 (depicted in FIG. 6(c)) avoids
the filtering cost of o5 ‘N-Cx(F,) by applying filter F, while
the result tuples for Q, are being output from the hash table
instead of applying it before stream tuples are inserted into the
hash table. Note that since sz(A;,G,)<<0g N, the cost of
applying filter F, on the aggregated result is negligible. How-
ever, postponing application of the filter F, will result in
(06,~0F,)'N additional tuples (see above) being inserted into
the hash table, leading to an additional cost of 0.005-N-C,,
(A,). Thus, depending on which of the two quantities
0.005-N-C(A)) or 0.1 N-C(F,) is greater, we should apply
F, either before inserting tuples into the hash table or while
they are being output from the hash table. In our case, since
C(A))=10CL(F)), it is more cost-effective to apply F, at the
end when result tuples are being output.

Observe that the same argument does not hold for F, which
filters (0; ~0p,)'N tuples thus saving 0.05-N-C(A,) in hash-
ing costs. Since checking F, on the filtered stream from G,
costs only 0.1-N-C(F,), the cost savings from hashing fewer
tuples far outweigh the additional cost of evaluating
F,—thus, in Strategy 3, we apply F, before tuples are inserted
into the hash table for Q,.

Strategy 4. Now if sz(B,)<<N for aggregate B,={a,bc},
then in addition to applying the filter G, on the tuple stream,
Strategy 4 (shown in FIG. 6(d)) further reduces computation
costs by aggregating the stream on attributes B, prior to
feeding the tuples into the hash tables for queries Q, and Q.
Furthermore, even though G, and F; do not overlap, it obtains
further improvements in filter evaluation costs by introducing
a new filter G,=0=a<300 obtained as a result of merging
filters G, and F;. This is because 20,;,=0.6<1.

For simplicity of exposition, we will initially only consider
filters that are conjunctions (") of attribute range conditions.
Thus, each filter is a multi-dimensional box whose bound-
aries along a dimension coincide with the range specified for
the attribute corresponding to the dimension. Only tuples
belonging to the box (with attribute values in the ranges
specified in the filter) are considered for aggregation. The
union F=F, UF, of two filters F, and F, is a box that contains
the boxes for F, and F,. Essentially, in the union F, the range
for each attribute a contains its ranges in F, and F,. For
example, if F;=(0<a<5 " 0=b=<5) and F,=(5<a<10 " 5<b=<10),
then their union F=(0=a=<10" 0<b=10). In Section 4.3, we will
discuss how our techniques can be extended to handle filters
containing disjunctions (v) as well.

We will also assume that for each query Q,, the filter
attributes in F, are a subset of the group-by attributes A,. We
expect that this will be the case for a majority of the queries.
For the few queries Q, that do not satisfy this assumption, we
can either: (1) process Q, separately; or (2) process a variant
Q'; of Q, jointly with other queries in Q if we find that this
leads to lower query processing costs. Here, Q' =(A',F") is
derived from Q,, and has the same filter as Q, (that is, F',=F,),
but its group-by attributes set A", contains attributes in both A,
and F,. Since A, = A',, the answer for Q, can be derived from
the result for Q'; by performing a final additional aggregation
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step. Note that the cost for the additional aggregation step
needs to be added to the processing cost for ',

Aggregate Trees. In the presence of filters, each node of the
aggregate tree is a (filter, grouping attributes) pair. Note that
there is an implicit ordering of filter and aggregation opera-
tions in each node depending on the input tuples to the node.
We discuss details below. The root node is special with a
(filter, attributes) pair equal to (T, T), and corresponds to the
input stream. Here, T is a special symbol that contains all
other filters and grouping attributes, but not vice versa. Fur-
ther, all tuples satisty the filter condition T. Intuitively, nodes
with group-by attributes equal to T perform no aggregation,
and nodes with filters equal to T do no filter checks. In the
aggregate tree, there can be an edge from a vertex v, to a
vertex v, only if v, covers v,, that is, the filter and group-by
attributes of v, contain the filter and group-by attributes,
respectively, of'v,. Note that since T contains every other filter
and group-by attributes, the root can have edges to every other
node in the tree.

Execution Plan for Aggregate Trees. Now, an aggregate
tree essentially specifies an execution plan for answering the
input aggregate queries. Let V denote the set of tree nodes
where incoming stream tuples are first aggregated. More for-
mally, V contains all tree nodes v such that: (1) the group-by
attributes of v is not T (that is, v performs aggregation); and
(2) the path from the root to v only has nodes with group-by
attributes equal to T (that is, none of v’s ancestors perform
aggregation).

As before, the execution plan has two phases:

Real-time streaming phase: We maintain a hash table for
each intermediate node v in V on the grouping attributes
for v. Each incoming stream tuple is inserted into the
hash table for v if and only if it satisfies all the filters in
the path from the root to v.

Periodic results output phase: After time period T, the result
tuples in the hash table for each intermediate node vinV
are used to compute the result tuples for nodes in the
aggregate subtree rooted at v. Essentially, the result
tuples for v are used to compute the result tuples for v’s
children, and their result tuples, in turn, are used to
compute the result tuples for their children, and so on.
Let v, be v,’s parent in the subtree (v, and v, differ in
their filters or their grouping attributes). Also, let (G,,B,)
denote the (filter, group-by attributes) pair at node v,.
Then, when computing v,’s result tuples from v,’s
tuples, we need to consider the following three cases.

Case 1: v,’s filter is identical to v,’s filter. Note that this
covers the case that v,’s filter is T. In this case, all the
result tuples for v, are aggregated on v,’s group-by
attributes by inserting them into a hash table on v,’s
attributes (without any filtering). The aggregated tuples
in the hash table are the result tuples for v,, and the cost
of computing these tuples is sz(B,,G,)-C4(B.,).

Case 2: v,’s group-by attributes are identical to v,’s
attributes. Note that this covers the case that v,’s group-
ing attributes are T. In this case, only v,’s filter condition
is applied to all the result tuples for v, (without any
aggregation), and those that satisfy the filter constitute
the result tuples for v,. The cost of computing these
tuples is sz(B,,G,)-C(G,).

Case 3: v, and v, have different filters and group-by
attributes. In this case, we have two options: (1) first
apply v,’s filter to v, ’s result tuples, and then aggregate
the ones that satisfy the filter on v,’s group-by attributes;
or (2) first aggregate v, ’s result tuples on v,’s group-by
attributes, and then filter out the aggregate tuples that do
not satisty v,’s filter. Depending on which of the two
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options has a lower cost, we will order the filtering and
aggregation operations in v, differently. The costs of the
two options are as follows:

Option(1)cost=sz(B,,G) Crx(Go)+sz(B |, G) Cri(B>)

Option(2)cost=sz(B,G ) CefB)+52(B5,G ) Cr(G5)

Thus, the cost of computing v,’s result tuples is the mini-
mum of the costs of options (1) and (2) above. Intuitively, if
s7(B,,G,)<<sz(B,,G,), then Option (1) is preferable. If this is
not the case and if sz(B,,G,)<<sz(B,,G,), then Option (2)
may prove to be better.

Problem Definition. We assign a cost to each tree edge

< Vl,V2> equal to the CPU cost of materializing the result
tuples for v, using the tuples of v, (as described in the 3 cases
above). Thus, the aggregate tree cost (which is the sum of the
edge costs) reflects the total CPU cost of processing all the
input aggregate queries. Our objective then is to find the
minimum-cost aggregate tree containing all the input aggre-
gate queries in Q.

4.2 Heuristics for Computing Aggregate Trees

It can be proven that the more general problem of comput-
ing the optimal aggregate tree for queries containing filters is
NP-hard. In the following subsections, we extend the greedy
and randomized heuristics presented above in sections 3.2.1
and 3.2.2, respectively, to compute a satisfactory low-cost
aggregate tree.

4.2.1 Greedy Heuristic

Ineach iteration, our modified greedy heuristic applies four
types of local modifications to the tree, and selects the one that
results in the largest cost reduction. Of the four modifications
listed below, the first two are variants of previously proposed
modifications for queries without filters (see Algorithm 1 in
FIG. 4).

1. For every pair of sibling nodes v,,v, (with parent p),
create a new node v with p as parent, and make v ,v, children
of' v. Set node v’s filter and group-by attributes equal to the
union of the filters and group-by attributes, respectively, of v,
and v,.

2. For every node v&Q (with parent p), delete v from the
tree, and make p the parent of v’s children.

3. For every node v&Q, modify v’s group-by attributes to
be equal to its parent’s group-by attributes.

4. For every node v&Q, modify v’s filter to be equal to its
parent’s filter.

FIGS. 6(c) and 6(d) (in Example 2) depict aggregate trees
containing nodes that apply filters but do not perform aggre-
gation (the reverse situation is possible as well). Modifica-
tions 3 and 4 described above have the effect of suppressing
aggregation and filtering, respectively, within node v, and
thus allow such nodes to be included in the aggregate tree by
our greedy heuristic. Note that a simple optimization to our
greedy heuristic would be to consider pairs of local modifi-
cations in each iteration instead of only a single modification.
This would allow, for example, modifications 1 and 3 above to
be combined to obtain a variant of modification 1 in which the
merged node v’s aggregation component is suppressed.
4.2.2 Randomized Heuristic

Similar to Algorithm 2 (in FIG. 5) presented above in
Section 3.2.2, in each iteration, our randomized heuristic
randomly selects a set of aggregate nodes R, and then com-
putes a directed steiner tree within the aggregate graph on
SUR. However, in order to ensure that R contains candidate
nodes with suppressed aggregation or filtering components,
its elements are generated by repeating the following steps a
constant (c,) number of times:
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1. Randomly select a subset of input query nodes from Q.

2. Let v denote the union of (filters and group-by attributes
of) the nodes selected above. Add v to R.

3. For every other node u in S that covers v, we add the
following two additional nodes x and y to R:

Node x with v’s filter, but u’s group-by attributes.

Node y with v’s group-by attributes, but u’s filter.

4.3 Handling Complex Filters

Our proposed techniques can be extended to handle com-
plex filters containing disjunctions (in addition to conjunc-
tions). We will assume that each filter F is in disjunctive
normal form, that is, each filter has the form D, v ...v D,
where each D; is a conjunction of attribute range conditions.
Thus, our filter F now is a union of multiple boxes instead of
a single box. Consequently, we can model the cost C(F) of
evaluating filter F as Z,C(D,), and for estimating the size of
aggregates with filters, we can use the sampling-based esti-
mator described in the previous subsection.

Now, in our heuristics, we compute the filter F for a new
node in the aggregate tree as the union F, U . .. U F_ of
multiple filters. When each F, is a single box, their union is
simply the box that contains all the filter boxes. However,
when each F, is a set of boxes {D/’, . . ., D,’}, the union
computation for F=F, U... UF_ is somewhat more involved.
We begin by initializing the union F to be the set of all the
boxes D/, that is, F={D,":1=i=q,1=j=l,}. Now, if F is used to
pre-filter tuples into the filters F,, then the filtering cost per
tuple is Co(F)+0,-Z,C.(F,)—here the first term is the cost of
checking whether the tuple satisfies F and the second term is
the cost of checking filters F, if the tuple satisfies F. Clearly,
the ideal value for the union F is one that minimizes the
filtering cost C(F)+0-2,C(F,). So we repeat the following
step until no further improvement in filtering cost is possible:
Let D,,D, be the pair of filter boxes in F whose merging
results in an F with the smallest filtering cost; merge D,.D,
(by taking their union) into a single box.

As described above in detail, principles of the invention
provide two techniques for sharing computation among mul-
tiple aggregate queries over a data stream: (1) instantiating
certain intermediate aggregates; and (2) coalescing similar
filters and using the coalesced filter to pre-filter stream tuples.
We proposed two heuristics, one greedy and another random-
ized, for finding low-cost query plans incorporating the above
optimizations. In our experiments with real-life NETFLOW
data sets, we found that our randomized heuristic generated
the best query plans with maximum sharing—this is because
it adopts a more global approach, continuously interleaving
optimization steps with random perturbations to the query
plan. In fact, query plans output by our randomized heuristic
boosted system throughput by over a factor of three compared
to a naive approach that processes queries separately.

Although illustrative embodiments of the present invention
have been described herein with reference to the accompany-
ing drawings, it is to be understood that the invention is not
limited to those precise embodiments, and that various other
changes and modifications may be made by one skilled in the
art without departing from the scope or spirit of the invention.

What is claimed is:

1. A method comprising:

determining, using a processor, a set of aggregate queries

to be executed on a data stream, the set of aggregate
queries comprising queries that perform respective sets
of aggregation operations on respective sets of attribute
values over respective time intervals;

generating, using the processor, at least one intermediate

aggregate query for a subset of the set of aggregate
queries, said at least one intermediate aggregate query
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combining a subset of aggregation operations for the
subset of aggregate queries and a subset of attribute
values;

executing, using the processor, said at least one intermedi-

ate aggregate query to generate pre-aggregated data
from the data stream for the subset of aggregate queries;
and

executing, using the processor, the subset of aggregate

queries on the pre-aggregated data subsequent to execut-
ing said at least one intermediate aggregate query;
wherein each of at least two aggregate queries in the subset
of aggregate queries comprises:
anumber of group-by attributes on which aggregation is
performed; and
a time interval over which aggregation is performed.

2. The method of claim 1, wherein generating said at least
one intermediate aggregate query further comprises deter-
mining that said at least one intermediate aggregate query
reduces a computational cost of executing the set of aggregate
queries to be executed on the data stream.

3. The method of claim 1, wherein said at least one inter-
mediate aggregate query comprises a number of group-by
attributes, the number of group-by attributes in said at least
one intermediate aggregate query being less than a sum of the
numbers of group-by attributes in the subset of aggregate
queries.

4. The method of claim 3, wherein generating said at least
one intermediate aggregate query further comprises deter-
mining that

Nx(X-1)
X

S <

where N is a given input size of tuples in the data stream, S
is the output size of tuples of said at least one interme-
diate aggregate query, X is the sum of the numbers of
group-by attributes for aggregate queries in the subset of
aggregate queries and Y is the number of group-by
attributes in said at least one intermediate aggregate
query.

5. The method of claim 1, further comprising subjecting at
least one of the aggregate queries in the subset of aggregate
queries to a respective set of attribute filters specifying
respective attribute range conditions for respective sets of
attribute values associated with the at least one of the aggre-
gate queries.

6. The method of claim 5, wherein said at least one inter-
mediate aggregate query is generated by combining respec-
tive attribute filters of two or more of the subset of aggregate
queries to form a single attribute filter usable to pre-filter
pre-aggregated data input to the two or more aggregate que-
ries.

7. The method of claim 1, wherein the data stream com-
prises network traffic records.

8. The method of claim 1, wherein the data stream com-
prises Internet Protocol flow records.

9. The method of claim 1, wherein the data stream com-
prises at least one of: sensor node readings; call detail records
in a telecommunications network; retail transaction records;
and one or more financial tickers.

10. An article of manufacture comprising a processor-read-
able non-transitory storage medium storing one or more
instructions which, when executed by a processor, configure
the processor to:
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determine a set of aggregate queries to be executed on a
data stream, the set of aggregate queries comprising
queries that perform respective sets of aggregation
operations on respective sets of attribute values over
respective time intervals;

generate at least one intermediate aggregate query for a
subset of the set of aggregate queries, said at least one
intermediate aggregate query combining a subset of
aggregation operations for the subset of aggregate que-
ries and a subset of attribute values;

execute said at least one intermediate aggregate query to
generate pre-aggregated data from the data stream for
the subset of queries; and

execute the subset of aggregate queries on the pre-aggre-
gated data subsequent to executing said at least one
intermediate aggregate query;

wherein each of at least two aggregate queries in the subset
of aggregate queries comprises:
anumber of group-by attributes on which aggregation is

performed; and
a time interval over which aggregation is performed.

11. The article of manufacture of claim 10, wherein gen-
erating said at least one intermediate aggregate query further
comprises determining that said at least one intermediate
aggregate query reduces a computational cost of executing
the set of aggregate queries to be executed on the data stream.

12. The article of manufacture of claim 10, wherein said at
least one intermediate aggregate query comprises anumber of
group-by attributes, the number of group-by attributes in said
at least one intermediate aggregate query being less than a
sum of the numbers of group-by attributes in the subset of
aggregate queries.

13. The article of manufacture of claim 10, wherein the one
or more instructions, when executed by a processor, further
configure the processor to subject at least one of the aggregate
queries in the subset of aggregate queries to a respective set of
attribute filters specifying respective attribute range condi-
tions for respective sets of attribute values associated with the
at least one of the aggregate queries.

14. The article of manufacture of claim 13, wherein said at
least one intermediate aggregate query is generated by com-
bining respective attribute filters of two or more of the subset
of aggregate queries to form a single attribute filter usable to
pre-filter pre-aggregated data input to the two or more aggre-
gate queries.

15. Apparatus, comprising:

a memory; and

a processor coupled to the memory and configured to:
determine a set of aggregate queries to be executed on a

data stream, the set of aggregate queries comprising
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queries that perform respective sets of aggregation
operations on respective sets of attribute values over
respective time intervals;

generate at least one intermediate aggregate query for a
subset of the set of aggregate queries, said at least one
intermediate aggregate query combining a subset of
aggregation operations for the subset of aggregate
queries and a subset of attribute values;

execute said at least one intermediate aggregate query to
generate pre-aggregated data from the data stream for
the subset of queries; and

execute the subset of aggregate queries on the pre-ag-
gregated data subsequent to executing said at least one
intermediate aggregate query;

wherein each of at least two aggregate queries in the subset

of aggregate queries comprises:

anumber of group-by attributes on which aggregation is
performed; and

a time interval over which aggregation is performed.

16. The apparatus of claim 15, wherein the processor is
configured to generate said at least one intermediate aggre-
gate query by determining that said at least one intermediate
aggregate query reduces a computational cost of executing
the set of aggregate queries to be executed on the data stream.

17. The apparatus of claim 15, wherein said at least one
intermediate aggregate query comprises a number of group-
by attributes, the number of group-by attributes in said at least
one intermediate aggregate query being less than a sum of the
numbers of group-by attributes in the subset of aggregate
queries.

18. The apparatus of claim 15, wherein the processor is
further configured to subject at least one of the aggregate
queries in the subset of aggregate queries to a respective set of
attribute filters specifying respective attribute range condi-
tions for respective sets of attribute values associated with the
at least one of the aggregate queries.

19. The apparatus of claim 18, wherein said at least one
intermediate aggregate query is generated by combining
respective attribute filters of two or more of the subset of
aggregate queries to form a single attribute filter usable to
pre-filter pre-aggregated data input to the two or more aggre-
gate queries.

20. The apparatus of claim 15, wherein the data stream
comprises at least one of: network traffic records; sensor node
readings; call detail records in a telecommunications net-
work; retail transaction records; and one or more financial
tickers.



